

---

## **Post-Quantum Cryptography in Corporate Data Protection**

**Sonia Sharma  
Jyoti Sachdeva**

### **Abstract**

The rapid advancement of quantum computing poses a significant threat to classical cryptographic methods such as RSA and ECC, which underpin corporate data protection strategies worldwide. This research investigates the adoption and implications of Post-Quantum Cryptography (PQC) in corporate environments through doctrinal analysis of regulatory standards (NIST FIPS 203–205, NSA CNSA 2.0) and non-doctrinal insights from industry surveys and market reports. Despite growing awareness—69% of corporations recognize quantum threats—only 5% have implemented PQC solutions. The paper presents empirical data illustrating global market trends (projected CAGR ~37%) and evaluates sectoral preparedness, particularly within finance and government. Case studies from companies like Commvault, Apple, and NXP demonstrate early adoption, while challenges remain around integration complexity, cryptographic agility, and regulatory lag. The findings emphasize the urgency of a proactive shift towards hybrid encryption models, procurement reforms, and sector-specific PQC readiness frameworks. This research concludes that strategic, agile adoption of PQC is critical to safeguarding long-term corporate data confidentiality in the approaching quantum era.

**Keywords:** Post-Quantum Cryptography, corporate data protection, cryptographic agility, quantum computing, cybersecurity compliance.

### **Introduction**

This new era of digitalization has unprecedentedly increased the dependence and need to protect the corporate data confidentiality, integrity, and authenticity using encryption. The modern business ecosystems rely on an asymmetric cryptography algorithm, like Diffie-Hellman key exchanges and RSA, Elliptic Curve Cryptography (ECC), and RSA-based algorithms in order to facilitate financial transactions, intellectual property, security mechanisms, and many other things. But with the advent of quantum, these basic methods are under great threat. Using the concepts of superposition and entanglement, quantum computers are capable of making computations exponentially more quickly than classical computers. In particular, Shor's algorithm allows quantum systems to factor extremely large numbers and to calculate discrete logarithms in a period of time proportional to the number of base numbers as well as the number of factors, and thereby essentially makes classical encryption useless. Consequently, the encrypted data today has the risk of being decrypted in the near future, which is also known as harvest now, decrypt later. Such a possibility has caused the cybersecurity community and regulatory bodies globally to advocate the creation and implementation of Post-Quantum Cryptography (PQC), or encryption protocols whose encryption will be impervious to quantum attacks.<sup>i</sup>

PQC requires no quantum needed hardware, but hard mathematical problems believed to be hard even to quantum computers including lattice-based, code-based, multivariate, and hash-based cryptography. Since 2016 the U.S. National Institute of Standards and Technology (NIST) has been leading the development of standardized PQC algorithms and in August 2024 (FIPS 203205) the first set of quantum-resistant cryptographic standards will be selected and published. These consist of algorithms CRYSTALS-Kyber (key encapsulation) and CRYSTALS-Dilithium (digital signature), whose use is now recommended at governmental and enterprise levels. Simultaneously, other agencies like the National Security Agency (NSA) or the Cybersecurity and Infrastructure Security Agency (CISA) even provided formal guidelines and requirements on the transition to quantum-safe algorithms in critical infrastructure and supply chains.<sup>ii</sup>

Nevertheless, the use of PQC in corporate circles has not been very extensive. There is a worldwide mismatch between knowledge and practice: it is clear that almost two-thirds of all enterprises are aware of the threat of quantum computing, and less than 5% of them have taken some quantity-secure cryptographic security steps. Many companies are still not past the testing/design or prototyping phase at the moment due to integration challenges, lack of regulatory pressure, cost issues and not enough technical expertise. The rate of adoption of PQC is even lower in emerging economies and this includes India but in other sectors like banking, finance and information technology, awareness is slowly being felt. Businesses risk their organizations by having too much to lose in cryptographic competence to leave the market at a vulnerable position in the event of future quantum attack. The study provides an analysis of the doctrinal environment, present adoption rates, industry issues, and the strategy of PQC where it applies to corporate data protection.<sup>iii</sup>

## **Methodology**

The study methodology in this research is doctrinal in the sense that it is dedicated to the study of legal, institutional and regulatory mechanisms that determine the planning and application of Post-Quantum Cryptography (PQC). A big landmark in the area is the U.S. National Institute of Standards and Technology (NIST) standardization process, leading to the publication of the first formal Federal Information Processing Standards (FIPS 203204) in August 2024. These are CRYSTALS-Kyber to key encapsulation mechanisms (KEMs), CRYSTALS-Dilithium to digital signatures, and SPHINCS+ to alternative non-stateful hash-based signature. These standards are given to displace insecure classical algorithms and establish the basis of the long-term cryptographic protocols. The Commercial National Security Algorithm Suite 2.0 (CNSA 2.0) which was announced by the NSA is also important and suggest an immediate adoption of AES-256 together with Kyber, Dilithium, and stateful hash-based signatures, including XMSS and LMS, to national security systems. The Cybersecurity and Infrastructure Security Agency (CISA) has also established the PQC Initiative to enable the quantum-safe cryptography in the procurement process and infrastructure planning of the U.S. government, as well as the risk management. These normative guidelines give the legal foundation to the transition of PQC and strategic in promoting the uptake of compliance in both the public and the private sectors.

---

The doctrinal analysis therefore analyses the consistency, scope and enforcement ability of these regulatory tools in the integration of PQC in corporate organizations.

The empirical section, which is the non-doctrinal section, uses empirical tools to analyze how PQC is adopted in real-life data protection in corporations referring to the trend in the market, survey findings, and case-specific applications. This involves use of quantitative market forecasting data as in the case of reports by Grand View Research and Precedence Research which projects that global PQC market will increase at a compound annual growth rate (CAGR) of above 37% between 2024 and 2034 with revenue possibly up to USD 30 billion. Besides, business survey data of corporate surveys of the cybersecurity companies and independent researches show that the corporations remain relatively unprotected as even though 69 percent of business organizations are aware of the dangers of quantum computing, only about 5 percent have undertaken PQC implementations. Such drastic disparity highlights the significance of corporate preparedness and adoption obstacles. Besides, useful qualitative information will be gathered on the case studies of such technology companies as Commvault (that develops PQC in backup systems), Apple (that incorporates PQ3 in iMessage), and NXP Semiconductors (that integrates PQC in hardware) and how and why they have managed to achieve a successful implementation of quantum-resistant solution. Triangulation of this data leads to the identification of the practical trends, technological issues as well as industry-specific behaviours that impact on the PQC adoption curve by the non-doctrinal methodology.

### **Market Overview & Trends**

The Post-Quantum Cryptography (PQC) market has emerged as one of the fastest-growing domains in cybersecurity, driven by the looming threat of quantum computing to traditional encryption systems. As global enterprises, government agencies, and technology providers brace for the inevitable advancement of quantum capabilities, PQC is increasingly being viewed not just as a future requirement but as an urgent present-day necessity. The market trajectory reflects this sense of urgency and transition readiness. Several market intelligence firms have published detailed forecasts that quantify this growth across the next decade.<sup>iv</sup>

### **Market Growth**

The market outlooks of PQC will show an aggressive compound annual growth rate (CAGR) of over 37 percent between 2025 and 2034. The reports compiled by Grand View Research indicate that the global PQC market was worth USD 1.15 billion in 2024, and the estimates show that it will have a CAGR of 37.6, which will demand the market to achieve a value of about USD 7.82 billion by 2030. In the meantime, Precedence Research offers an even more optimistic initial number; the current company valuation stands at USD 1.22 billion, and it is projected to reach USD 1.68 billion in 2025. They project that the market will jump to USD 29.95 billion in 2034 as it gains momentum in other financial institutions, health sectors and security agencies in critical infrastructure.<sup>v</sup>

Another estimate, which is less optimistic and done by Custom Market Insights, estimates that the 2024 market size will constitute USD 308.6 million, and that of 2025 will be USD 408.3 million. Their analysis estimates a CAGR of 37.1 per cent in the next decade, which is a strong growth despite the reduced baseline to predict, during which the industry will finally grow to

---

USD 6.976 billion by 2034. This disparity in projections could also occur due to the differentiation in the definition of the PQC ecosystem, such as narrowing down to the deployment of algorithms or integrating the same with a cloud service, or having everything such as the hardware and software stacks.<sup>vi</sup>

A line chart that compares these three forecasts would show a high level of agreement in terms of the direction of growth even though the forecasts differ in the way of market valuation. Each of the forecasts mirrors near-exponential compound growth starting in 2025, when NIST plans to formalize the implementation of PQCs and when more and more regulatory pressure will be brought to bear to eliminate quantum-susceptible cryptography. Such sharp growth is supported by the fact that PQC is essential to guard data assets, protect regulatory compliance, and condition digital infrastructure to the post-quantum world.<sup>vii</sup>

### **Geography & Verticals**

PQC market is also exhibiting serious geographical difference in maturity and growth potential. North America is the current leader of the global market with a total revenue share of about 37 percent to 38 percent by 2024. It is enjoying first-mover advantage, profound technology foundation and propitious government conductivity. Domestic adoption is being boosted by major U.S. efforts like the PQC project at the National Institute of Standards and Technology (NIST) and the Cybersecurity and Infrastructure Security Agency (CISA) PQC readiness program. Early adopters include large enterprises and federal agencies in the U.S using pilot programs and making PQC standards part of their procurements and compliance requirements. Canada is equally experiencing an increased interest, especially in the financial sector with organizations like the Bank of Canada evaluating the quantum-safe infrastructures.<sup>viii</sup>

Conversely, Asia-Pacific market is also expected to experience the highest growth of nearly 40.6 % CAGR during the forecast period. Nations such as China, Japan, India and South Korea are already increasing quantum research and concurrently investigating PQC to protect domestic critical infrastructure. Especially the Indian configuration has drawn the interest of its banking and IT sectors. In a study conducted by ISB and IIDS in 2024, 57.5 percent of Indian financial institutions are anticipating quantum threats to be realized in the next three years. The ministry of internal affairs and communication of Japan has issued a PQC roadmap to get enterprises involved into it very early, especially in the fintech and IoT areab.<sup>ix</sup>

Looking at it through the prism of industrial vertical use, government and defense is the most dominant user. With such stakes involved in the field of national security and defense communication, these sectors are in an early phase of the PQC ecosystem. U.S., EU and other Asia-Pacific agencies have already started moving towards NSA-based quantum-resistant algorithms, especially when it comes to the national-level cybersecurity schemes to secure top-secret and sensitive information.<sup>x</sup>

The financial services business is next in line and particularly so since banks, fintech firms, and even insurance firms have long-retention customer records, which are potentially at risk to the “harvest now, decrypt later” threat. PQC is increasingly being used to digital trust and resilience framework to improve cybersecurity compliance under an increasing regulatory pressure in the financial sector. Several companies, including JPMorgan, Mastercard, and SBI, have started contemplating pilot projects and testing quantum-resistant technology.

The other high-priority vertical is healthcare, especially after COVID-19 as telemedicine and healthcare digital records gain popularity. Sensitive nature of personal health data and a high potential of ransomware and data breach events has made health tech firms consider adopting PQC integrations. In the same fashion, the telecommunications sector is planning to integrate PQC into 5G and the Internet of Things architectures. Telecom services in Europe and Asia have started incorporating PQC layers in network protocols to preclude the detection of any forthcoming interception vulnerabilities.<sup>xi</sup>

It can be stated that, though North America is dominating in adoption volumes and even standard making currently, the Asia-Pacific region is developing into the engine of PQC market growth. Governments, finance, and healthcare are the most active across all sectors in defenses against quantum-resilient infrastructure, indicating the validity of the estimations of the global market to grow to great proportions.

**Table 1: Comparative Forecasts of the Global PQC Market (2024–2034)**

| Source                 | 2024 (USD Billion) | 2025 (USD Billion) | CAGR (2025–2034) | 2030 (USD Billion) | 2034 (USD Billion) |
|------------------------|--------------------|--------------------|------------------|--------------------|--------------------|
| Grand View Research    | 1.15               | 1.50               | 37.6%            | 7.82               | 19.25              |
| Precedence Research    | 1.22               | 1.68               | 37.7%            | 12.80              | 29.95              |
| Custom Market Insights | 0.3086             | 0.4083             | 37.1%            | 5.62               | 6.976              |

**Table 2: Regional Market Share and Growth**

| Region               | 2024 Market Share | CAGR (2025–2034) | Key Highlights                                                                   |
|----------------------|-------------------|------------------|----------------------------------------------------------------------------------|
| North America        | 37.8%             | 36.2%            | NIST standards adoption; CISA PQC Initiative; early corporate pilots             |
| Asia-Pacific         | 29.4%             | 40.6%            | Fastest growing; India, Japan, China increasing PQC R&D and sectoral integration |
| Europe               | 23.6%             | 35.8%            | EU's digital sovereignty goals and post-quantum telecom infrastructure           |
| Latin America        | 5.2%              | 32.4%            | Gradual policy adoption; key data center expansions in Brazil and Mexico         |
| Middle East & Africa | 4.0%              | 30.1%            | Emerging interest in finance and telecom; pilot deployments in UAE, South Africa |

**Table 3: Sector-Wise PQC Adoption Trends**

| Industry Vertical    | Adoption Status  | Key Drivers                                                                       |
|----------------------|------------------|-----------------------------------------------------------------------------------|
| Government & Defense | Very High        | National security; mandates (NSA CNSA 2.0, NIST FIPS); classified data protection |
| Financial Services   | High             | Long data retention, regulatory compliance, HNDL attack mitigation                |
| Healthcare           | Moderate to High | PHI protection, telemedicine expansion, breach prevention                         |
| Telecommunications   | Emerging         | 5G rollout security, IoT architecture hardening, protocol upgrades                |
| IT & Cloud Services  | Moderate         | Encryption-as-a-Service providers (e.g., Commvault, Google, IBM) experimenting    |
| E-Commerce & Retail  | Low              | Limited awareness, short data retention cycles, high transaction volumes          |

### **Case Studies & Corporate Tools**

In recent years, leading corporations have proactively engaged in post-quantum cryptography (PQC) initiatives to future-proof their data infrastructure. This section highlights notable case studies that demonstrate how organizations across sectors are integrating PQC into their products and strategies.

#### **1. Commvault (June 2025): Enterprise-Grade PQC for Data Backup**

Commvault is a worldwide provider of data protection and backup services that declared the deployment of post-quantum encryption functions in June 2025. With the dangers of the possibility of data stolen today and decrypted after the development of quantum computers, or the so-called harvest-now decrypt-later attacks, Commvault can provide its customers with the security of their long-term and archived data with quantum-safe algorithms. This transition is taking advantage of hybrid encryption schemes with hybrid algorithms (included inside the classical algorithm in conjunction with a PQC algorithm) to achieve backward compatibility with legacy systems. They have now included their Quantum-Safe data protection into Commvault Cloud, one of the initial commercial implementations in the enterprise backup realm.<sup>xii</sup>

#### **2. Apple Inc.: Quantum-Resistant Messaging with PQ3**

Apple has made a major move towards consumer-grade quantum-safe communications by releasing PQ3, a post quantum cryptographic algorithm to iMessage, announced early 2024. PQ3 uses an extension (Kyber, to perform key encapsulation) of the iMessage cryptographic stack, which has resistance to quantum attacks, with low computational overhead. The scheme is hybrid, keeping classical elliptic-curve cryptography (ECC) as well as Kyber as backward compatibility mechanism. It is remarkable that Apple has introduced particularly effective

---

forward secrecy, post-quantum security, and anti-leakage of metadata in the message transport, making secure messaging apps across the world more or less difficult to achieve.

### **3. Quantinuum: Quantum-Origin Keys for Enterprise**

Quantinuum, a shared business enterprise between Honeywell and Cambridge Quantum, has created a platform named Quantum Origin- which provides quantum-strong cryptography keys which are entropy-rich. These keys are enhanced in their resistance to quantum and classical threats by using quantum randomness. In 20232024, Quantinuum partnered with companies operating in the banking and aerospace industries and incorporated its keys into VPNs, digital signatures, and Internet of Things. This is an example of a B2B quantum service framework, which supplements the adoption of post-quantum algorithms with the safe key management.<sup>xiii</sup>

### **4. NXP Semiconductors: Hardware-Level PQC Readiness**

A pioneer in the fields of automotive and IoT semiconductors, NXP has started to pilot CRYSTALS-Kyber and Dilithium in security modules (HSMs) and safe chipsets. This is a sign of the company engagements in making embryonic systems ready to deal with the upcoming threats posed by quantum computing. Prototypes have been tested directly via European telecom and smart city infrastructure partners and it is planned that commercial roll-outs will begin by 2026. They have cryptographic libraries that are in accordance with NIST round 3 selections, where high-security benchmarks are guaranteed by futureproof devices.<sup>xiv</sup>

## **Standards & Policy Evolution**

As the threat landscape shifts with the advancement of quantum computing, national and international agencies have initiated comprehensive efforts to standardize and guide the adoption of post-quantum cryptography (PQC). These standards serve not only as doctrinal instruments establishing cryptographic norms, but also as regulatory benchmarks for both public and private sector compliance.

### **Key Standards**

#### **1. NIST FIPS 203–205 (2024):<sup>xv</sup>**

On August 13, 2024, the National Institute of Standards and Technology (NIST) finalized and released three Federal Information Processing Standards (FIPS) for PQC algorithms:

- **FIPS 203:** CRYSTALS-Kyber – for key encapsulation mechanisms (KEM)
- **FIPS 204:** CRYSTALS-Dilithium – for digital signatures
- **FIPS 205:** SPHINCS+ – a stateless hash-based signature scheme

These selections are the culmination of a seven-year process involving global academic and industry collaboration, ensuring that the selected algorithms are not only secure against known quantum attacks but also feasible for large-scale deployment. FIPS 203–205 are now the first official PQC algorithms recommended for U.S. government use, marking a doctrinal milestone in cryptographic transition.

#### **2. NSA's CNSA 2.0 (Commercial National Security Algorithm Suite):**

The U.S. National Security Agency (NSA) revised its cryptographic guidelines under CNSA 2.0 in September 2022 and updated them post-2024. The suite mandates the use of:<sup>xvi</sup>

- **ML-KEM-1024 (Kyber)** for encryption
- **ML-DSA-87 (Dilithium)** for signatures

---

- **XMSS and LMS** for certain use cases like software and firmware authentication

These standards are expected to become mandatory across all national security systems by 2030. This provides a clear governmental signal for corporations operating in regulated sectors to align with quantum-resilient algorithms early.

### **3. CISA PQC Initiative:**

The U.S. Cybersecurity and Infrastructure Security Agency (CISA) launched a strategic PQC roadmap focused on assisting critical infrastructure operators—energy, finance, telecommunications—in transitioning to PQC. This includes procurement guidelines, risk assessments, and interoperability tests to ensure organizations can plan for a quantum-resistant future without disrupting operations.

### **4. NIST Recommendations (2025–2030):**

NIST recommends that federal agencies begin transitioning to PQC by 2025, with a completion horizon by 2030. This phased guidance includes prioritizing high-value assets, performing inventory of vulnerable cryptography, and developing crypto-agility (the ability to rapidly switch between cryptographic systems). These measures are increasingly being mirrored in international policy frameworks including the EU's ENISA guidance and India's National Cybersecurity Strategy (proposed draft 2023).

## **Implementation Challenges**

While doctrinal structures and timelines are now established, the **non-doctrinal implementation** presents significant challenges:<sup>xvii</sup>

### **1. Legacy System Compatibility:**

Many enterprise systems (e.g., TLS, SSH, VPNs) are not easily upgradable due to hardware dependencies and software architecture limitations. Replacing or layering PQC on top of such systems requires significant investment in software refactoring and system interoperability.

### **2. Performance Bottlenecks:**

PQC algorithms—particularly lattice-based ones like Kyber and Dilithium—have larger key sizes and slower performance compared to classical algorithms like RSA or ECC. For instance, Kyber-1024 keys are ~1.5 KB, significantly larger than RSA-2048 (~256 bytes). This affects network performance, storage overhead, and real-time transaction speeds, especially in constrained environments like IoT or embedded systems.

### **3. Algorithm Maturity and Risk:**

While NIST has approved the current algorithms, the long-term cryptanalysis community scrutiny is ongoing. There is a risk of premature standardization, especially with side-channel vulnerabilities and edge-case performance in high-throughput environments.

### **4. Resource Constraints and Expertise Gaps:**

A majority of corporate IT teams lack in-house cryptographic expertise. Implementing PQC demands a multi-disciplinary approach involving cryptographers, software architects, and compliance officers—often unaffordable for small and medium-sized enterprises (SMEs).

## **Discussion**

---

The evolution of quantum computing has not just prompted theoretical discourse but tangible movement in the cryptographic standards domain. However, a sharp divergence remains between **policy preparedness** and **practical corporate adoption**. This section critically discusses that dissonance, exploring the gap in adoption, the strategic imperatives behind urgent migration to PQC, and how procurement reforms may catalyze corporate shifts.

### **Gap Analysis**

Regulatory requirements have been put in place, and the post-quantum cryptographic standards have been developed, such as NIST FIPS 203205, CNSA 2.0 set of standards put out by NSA, and the CISA PQC transition framework, yet the private sector still demonstrates a significant sluggishness. According to surveys made by Thales and Commvault, although more than 69 percent of international businesses acknowledge the possible risk held by quantum decryption, even then only a little under 5 percent are actually putting some form or another of PQC to their production process.<sup>xviii</sup> Such a gap leads to a cognitive dissonance: just because someone is aware of the risk they face, it is not necessarily the case that they act to prevent it. It is especially relevant in non-regulated areas like retail, real estate, and logistics, where the cryptographic issues tend to be considered abstract and long-range rather than pressing. Even in areas that have high sensitivity of data such as in the banking industry or the medical field, the migration towards quantum-resistant encryption has been negligible. In fact as an ISB-IIDS study (2024) explains, even Indian BFSI (banking, financial services, and insurance) companies are less prepared than many other firms with only 2.4 of 5 in preparedness of PQCs, although almost 58% of respondents admitted that quantum threats may occur within the next three years.<sup>xix</sup>

Such delay can be explained by a combination of technical, strategic and psychological issues. The problem is that the technicalities of integrating PQC into the available infrastructures are extremely complicated and demand modifications to fundamental protocols such as TLS, SSH, and PKIs. Recommended algorithms, Kyber, Dilithium, SPHINCS+ have much larger key sizes and computational overhead which can hurt latency-sensitive applications in general and in mobile or IoT scenarios, in particular. Strategically, the issue of PQC migration can be easily sidestepped when there are more visible threats like ransomware and phishing, as well as DDoS attacks. At the psychological level the threat of quantum computing is seen as a far fetched or hypothetical, so the approach is of wait and watch. What makes this inertia worse is the fact that the risk of being caught by attackers who have already been storing encrypted traffic waiting to decrypt it using quantum tools is often underestimated. The danger of this retrospective threat is that data secured at today standards is easy to attack the day after tomorrow, and this aspect makes doing nothing especially hazardous to corporations with long-retention data, be it intellectual property, legal archives, or even healthcare records.<sup>xx</sup>

### **Strategic Implications**

Among the most prominent consequences of a slow PQC implementation, we could mark the issue of data longevity. Information being encrypted today with classical algorithms such as RSA or ECC could be sensitive to decades of exposure the same way that legal contracts, financial audits, biometric data, or classified communications will be sensitive. Common key lengths and modes of encryptions being currently used can go obsolete as soon as the first

functional quantum computers able to run Sher algorithm appear. This situation will move PQC out of the checklist of futuristic consideration to mandatory compliance in the present-day.<sup>xxi</sup> This is been noticed by regulatory bodies and CISA, NIST as well as global financial watchdogs have advised companies to start crypto-inventories so that the vulnerable systems can be identified and priorities set. The use of Commvault in June 2025 is an exemplary step, wherein enterprise data backup tools were reorganized to use hybrid PQC encryption to protect against future quantum attacks to ensure organizations have a reasonable solution of guarding their long-term data without disturbing their ongoing operations.<sup>xxii</sup>

The concept of crypto agility will be essential to satisfy the needs of the present and the future. Crypto agility is the property of the system which allows fast changing between cryptographic algorithms or adding others without a significant redesign of the system. As an example, a business VPN protocol that may be turned off or turned on between ECC and Kyber or RSA and a hybrid ECC-Dilithium implementation is crypto-agile. This principle allows the organizations to practice the so-called dual-track security: they can keep doing what worked previously, i.e., classical encryption, and overlay them by quantum-resistant algorithms. A good example is the use of PQ3 in iMessage implemented by Apple.<sup>xxiii</sup> Apple achieves a post-quantum security of its future iOS users, backwards-compatible with current ECC mechanics by implementing CRYSTALS-Kyber. These hybrid schemes which are also being implemented into TLS 1.3 test beds by Google and Cloudflare can be implemented so that it has a nice interoperability with each other and it gives a form of insurance against the risk of algorithm obsolescence that can happen in the future. They also facilitate the insertion of quantum key distribution (QKD) systems in the high-security applications such as the inter-bank messaging and satellite communication.<sup>xxiv</sup>

The introduction of PQC into buying schemes is turning into an effective catalyst to corporate acceptance. U.S. Cybersecurity and Infrastructure Security Agency (CISA) has already introduced a PQC procurement guideline, which requires vendors to implement cryptographic agility and post-quantum readiness as a product contract. This policy shift sets off a supply-chain ripple effect that, when governments and key sectors of critical infrastructure make demands of such PQC-ready systems, it creates a need among technology vendors that requires a re-architecting of their platforms to accommodate those demands, sending these standards out to more of the corporate world beyond its direct applications. As an example, NXP Semiconductors and Infineon Technologies have already started integrating the Kyber and Dilithium support in their hardware security module and chipsets, simplifying future compliance requirements among device developers and service integrators without also having to undertake new development cycles. In India where there is a combination of public sector undertakings (PSUs) in telecom and defence that drives procurement, the adoption of PQC in national procurement provisions can significantly raise the entire level of cyber hygiene.<sup>xxv</sup>

Moreover, the trend across the globe towards PQC presents the chance of democratizing dependable infrastructure. Whereas bigger companies, such as Apple, Commvault, Quantinuum, can afford to be on top of innovation in the field of post-quantum security, the small and medium enterprises (SMEs) may be technically impaired to realize or financially constrained to implement their cryptographic overhauls. These barriers may be reduced by

policy-level incentives that take the form of tax credits over PQC adoption, toolkits subsidized, or regulatory sandboxes. Open-source libraries of cryptographic algorithms such as liboqs and the PQC implementations in BoringSSL offer SMEs low entry points in which to begin experimenting with mixed-protocols, and commercial solutions offering quantum-safe key management (e.g., Quantum Origin by Quantinuum) are beginning to be available as a plug-and-play service.<sup>xxvi</sup>

It should be pointed out that strategic relevance of the PQC is not only related to its technical integrity but also to its timing and interconnection. The moment of action is here, not when quantum supremacy is actual, but when current information is still at risk of being compromised in the future. The refusal to recognize this urgency will lead to the encrypted assets being retroactively exposed, which will make the compliance postures and data governance systems inefficient. Instead of presenting PQC integration as an investment in cybersecurity in the future, one should refer to this phenomenon as an immediate need to ensure data integrity, avoiding liability issues, and enhancing cross-border compliance. It is the synergy of doctrinal requirements, crypto-agility engineering and procurement transformation. Corporate leadership is now obliged to operate wisely.

## **Conclusion**

The introduction of quantum computing completely reshaped the paradigm of cybersecurity threats and the ability of corporations to continue using existing cryptographic systems requires a reconsideration. As it was indicated in this paper, Post-Quantum Cryptography (PQC) can be cited as most promising, standard presumptive solution to secure the sensitive corporate data against the advancing quantum-powered attacks in the future. Although doctrinal efforts, fronted by bodies like NIST, NSA and CISA, have made accomplishment in setting algorithmic consistent like CRYSTALS-Kyber and Dilithium, a big hole remains in corporate compliance. Even though people are well aware of the threats, especially the so-called harvest now, decrypt later one, few companies have adopted the PQC in practice. This lack of alignment between policy and action highlights a wider tendency of delay due to the technicalities involved, the expense of integration, and the perception that the quantum threat is temporally distant. Nevertheless, the reason behind strategic necessity to employ PQC is hard to overestimate. Data longevity implies that anything that is encrypted now can be susceptible in a few decades. Institutions dealing with sensitive records: financial documents, health-related data, trade secrets cannot follow a reactive approach; they should introduce quantum-safe algorithms into encryption procedures; in their purchase schemes. The transitional solutions include crypto-agility and hybrid models offering encryption, and we can see the emergence of case studies at Commvault, Apple, and NXP proving the real-world implementation. In further development, the companies should not regard PQC as a fanciful addition, but a layered veneer on prudent cybersecurity design in the future. It is going to entail a roll-up of legal requirements, technical advances, vendor preparations, and internal management. With PQC standards maturing and the enhancement of regulatory pressure, there will be advantages to and early movers will have the benefits of greater trust, regulatory compliance, and a strong position on reputation during the social, economic and evolutionary challenges to resilience in the era of unprecedented

---

digital risk. It is time to do something about it now, before the encrypted assets we currently enjoy become the weak points tomorrow.

---

## References

- <sup>i</sup> Demir, E. D., Bilgin, B., & Onbasli, M. C. (2025). *Performance analysis and industry deployment of post-quantum cryptography algorithms*. arXiv. <https://doi.org/10.48550/arXiv.2503.12952>
- <sup>ii</sup> Hosseini, S. M. R., & Pilaram, H. (2024). *A comprehensive review of post-quantum cryptography: Challenges and advances*. Cryptology ePrint Archive, Paper 2024/1940.
- <sup>iii</sup> Fedorov, A. K. (2023). *Deploying hybrid quantum-secured infrastructure for applications: When quantum and post-quantum can work together*. arXiv. <https://doi.org/10.48550/arXiv.2304.04585>
- <sup>iv</sup> Hasan, K. F., Simpson, L., Rezazadeh Baee, M. A., Islam, C., Rahman, Z., Armstrong, W., ... McKague, M. (2023). *A framework for migrating to post-quantum cryptography: Security dependency analysis and case studies*. arXiv. <https://doi.org/10.48550/arXiv.2307.06520>
- <sup>v</sup> Mahdi, L. H., & Abdullah, A. A. (2025). *Fortifying future IoT security: A comprehensive review on lightweight post-quantum cryptography*. *Engineering, Technology & Applied Science Research*, 15(2), 21812–21821.
- <sup>vi</sup> Mitra, S., et al. (2024). *Enhancing the security of classical communication with post-quantum authenticated-encryption schemes for quantum key distribution*. *Computers*, 13(7), 163.
- <sup>vii</sup> Kumar, P. V. A., et al. (2020). *Hash-based digital signatures—a tutorial review*. In IEEE International Conference on Public Key Infrastructure and its Applications (PKIA).
- <sup>viii</sup> Lopez-Valdivieso, J., & Cumplido, R. (2024). *Performance analysis of Cryptographic Hardware–Software Architecture Based on Hashes for SPHINCS+*. *ACM Transactions on Reconfigurable Technology and Systems*, 14(1).
- <sup>ix</sup> Liu, F., Zheng, Z., Gong, Z., & others. (2024). *A survey on lattice-based digital signature*. *Cybersecurity*, 7, 7.
- <sup>x</sup> Tasopoulos, E., et al. (2024). *A review of post-quantum privacy preservation for IoMT using blockchain*. *Electronics*, 13(15), 2962.
- <sup>xi</sup> Kumari, et al. (2024). *A comparative study of post-quantum cryptographic algorithm implementations for secure and efficient energy systems monitoring*. *Electronics*, 12(18), 3824.
- <sup>xii</sup> Shahreyar, et al. (2023). *Post-Quantum Cryptography: A Systematic Review of Next-Generation Cybersecurity Algorithms*. *International Journal of Artificial Intelligence, Data Science, and Machine Learning*, 4(4), 102.
- <sup>xiii</sup> Hosseini, S. M. R., & Pilaram, H. (2024). *Post-quantum cryptography: Challenges and advances*. Sharif University of Technology.
- <sup>xiv</sup> Hasan, K. F., et al. (2023). *Migration framework to PQC*.
- <sup>xv</sup> Fedorov, A. K. (2023). *Hybrid quantum-secured infrastructure deployment*.
- <sup>xvi</sup> Ekert, A., et al. (1992). *Practical quantum cryptography based on two-photon interferometry*. *Physical Review Letters*, 69(9), 1293–1297.

xvii Buchmann, J., Lange, T., & Mengíbar, O. (2017). *Post-quantum cryptography*. *Nature*, 549(7670), 188–193.

xviii Bernstein, D. J., & Lange, T. (2017). *Post-quantum cryptography*. *Nature*, 549, 188–193.

xix Sood, N. (2024). *Cryptography in Post-Quantum Computing Era*. SSRN Electronic Journal.

xx Rawal, B. S., & Curry, P. J. (2024). *Challenges and opportunities on the horizon of post-quantum cryptography*. *APL Quantum*, 5(2).

xxi Bagirovs, E., Provodin, G., Sipola, T., & Hautamäki, J. (2024). *Applications of post-quantum cryptography*. European Conference on Cyber Warfare and Security.

xxii Mamatha, G. S., Dimri, N., & Sinha, R. (2024). *Post-Quantum Cryptography: Securing Digital Communication in the Quantum Era*. Procedia Computer Science.

xxiii Bavdekar, R., et al. (2022). *Post Quantum Cryptography: Techniques, Challenges, Standardization, and Directions for Future Research*. ICOIN 2023.

xxiv Ekert, A. (1991). *Quantum cryptography based on Bell's theorem*. *Physical Review Letters*, 67(6), 661–663.

xxv Buchmann, J., Braun, J., Demirel, D., & Geihs, M. (2017). *Quantum cryptography: A view from classical cryptography*. *Quantum Science and Technology*, 2(2), 020502.

xxvi Imaña, J. L., & Luengo, I. (2024). *The security implications of quantum cryptography and quantum computing*. *Future Generation Computer Systems*, 160, 666–710.