

Role of Blockchain In Supply Chain Transparency

DHEERAJ SINHA

Abstract

Supply chains are increasingly complex and globalized, necessitating advanced systems to ensure transparency, trust, and efficiency. Blockchain technology, with its decentralized, secure, and immutable ledger, offers a transformative solution to these challenges. This paper explores how blockchain can enhance supply chain transparency by providing traceability, preventing fraud, and fostering accountability. By examining key applications, case studies, and the challenges of implementation, the paper highlights blockchain's potential to revolutionize supply chain management. Despite its advantages, issues related to technological maturity, operational constraints, and regulatory compliance must be addressed for widespread adoption.

Keywords: Blockchain, Supply Chain Transparency, Decentralized Ledger, Traceability, Fraud Prevention.

Introduction

Supply chains are the foundation of industrial and logistical enterprises, facilitating the delivery of goods and services to consumers. Each organisation within the supply chain represents a link (time and process) that constitutes a sequence of events. Supply chains are more intricate, globalised, and competitive to provide superior quality goods and services at reduced costs. A more sophisticated supply chain must be designed that transcends the conventional inter-organizational buyer/seller relationship paradigm. Blockchain is a software framework consisting of interlinked data chunks. Each block contains a certain amount of records related to a digital transaction or information about the creation of an asset. Consequently, connecting blocks to a chain generates a sequence of digital records. The data inside the blocks is duplicated, disseminated, and synchronised among several nodes in a network, resulting in decentralisation. Blockchain is an innovative technology for enhancing the industrial supply chain systems. Numerous projects and implementations of Blockchain inside the supply chain network seek to augment confidence via transparency, dependability, and data traceability. It is believed that a global, collaborative, decentralised, and transparent platform might benefit all stakeholders in the supply chain. The manufacturing supply chain facilitates the movement

of items via various processes across numerous locations, modes, and firms. The existing trading process depends on transactional confidence, which is contingent upon the integrity of parties about the information exchanged within the supply chain. Trust in peer transactions is established via the execution of control and custody. Nonetheless, the trust established via control is intricate and expensive. The transportation of products happens before payment is received, compromising confidence and control owing to information asymmetry about shipment data, including quality, quantity, status, and location of the items. [1, 2].

Understanding Supply Chain Transparency

Supply chain transparency relies on the extent of information released about a company's supply chain procedures and practices. Transparency pertains to information about processes, including the identity and nature of suppliers, labour conditions at those suppliers, and the materials used, among other factors. A comprehensive definition of transparency should be established, emphasising the disclosure of information to assess a potential positive correlation with supply chain performance measures. The net advantage seen by enterprises from transitioning to enhanced supply chain transparency remains ambiguous. Companies must assess their prospective internal costs and risks in relation to possible rewards and competitive advantages, leading to a research initiative on this subject. [3].

Supply chain transparency pertains to the dissemination of information across the supply chain network until it reaches the end consumer. A transparent supply chain offers information on the manufacturing process, product origin, quality, reliability, environmental compliance, and more factors. Transparency may prompt reactions to the recognised adverse effects of obfuscation related to environmental and ethical discrepancies, such as endangering customers with hazardous substances. Simultaneously, openness may avert brand harm to corporations that adhere to regulations but have negative social consequences. The movement towards supply chain openness is uneven among sectors, product categories, and geographic regions. Consumer items, such as food, become more noticeable to the consumer base, typically bolstered by NGO/NGP initiatives that promote information disclosure about eco-labeling schemes and certifications, hence enhancing openness in the procurement chain. The ancillary effects of openness may vary across sectors: fostering innovation and education, shaping market design and structure, and reconfiguring supply chains. [4].

Blockchain Technology Overview

Both the corporate and governmental sectors are progressively seeing blockchain as a disruptive technology with potentially extensive implications. The efficacy of blockchain in its supply chain management (SCM) recommendations remains uncertain, particularly in light of competing alternatives that possess significant momentum. There are ongoing long-term initiatives: one aims to advance distributed ledger technology (DLT) in blockchain, while the other seeks to centralise record-keeping inside an Internet of Things (IoT)-driven telemetry system under robust conventional supervision. ThirdWave is unexpectedly astonished by the early prioritisation of SCM for DLT. The initial objective of blockchain was to improve general-purpose transaction processing: a peer-to-peer communication protocol designed to digitise currency, enabling the transfer of ownership of many types of assets rather than only transferring cash. This general perspective failed to adequately account for the existing strengths and weaknesses of traditions or to apply the original concepts more broadly, such as to more informed unbanked individuals, communities whose validating behaviours contradicted the proposed approaches, or categories of entities like interest, which are more thoroughly documented by accounting than cash. Subsequent modifications to certain aspects of its predecessor RFC 959 proved to be more operationally beneficial and politically acceptable. Nonetheless, all these progressive visions are rather broad and indirect; why initially fragment convergence into several components (i.e., various W3t digital currency concepts)? Furthermore, several components endorse interoperability (i.e., federation), a significant issue highlighted in the late 1990s that influenced other concepts subsequently embraced or more clearly defined in the foundational vision (e.g., mobile agents, fundamental invariants). Conversely, the profound competitive drawbacks associated with sensitive vulnerabilities in blockchain technology seem to more explicitly elucidate blockchain's emphasis on providing supply chains, inadequate nourishment, and fraudulent activities in rivalry with grassroots 3D printing, domestic hydroponics, and similar innovations [5].

Initially, it is important to define blockchain and distinguish it from the broader concept of Distributed Ledger Technology (DLT). Supply chains, whether business-to-business (B2B) or business-to-consumer (B2C), often include three elements. The first aspect is the movement of products, the subsequent aspect is the flow of ownership, and lastly, transaction systems monitor and record both of these flows. The transaction system's function is to preserve a record of ownership for items traversing this chain and to guarantee that ownership transfers occur just when products are delivered (i.e., reach the destination/escrow). In transactions, the

identities of items, assets, and ownership are often recorded as input into a controlled data system via a shared trust record such as an accounting ledger, database, or logbook, serving as the foundation for maintaining and managing the connection prior to any balance transfer. [6].

Applications of Blockchain In Supply Chain Management

A supply chain consists of all interconnected entities involved in producing, distributing and consuming products or services. On the supply chain, the transactions and states of produced or transported items have to be recorded, shared and tracked. Companies still mostly rely on their own databases or spread financial or transport documents in paper among the supply chain participants. Hence, there is not one global source of trusted and updated information. As a result, even though Information and Communication Technologies (ICT) have been used with success by many other industries, the supply chain sector still encounters problems on the settlement of governance, responsibility and trust. These issues mostly arise from the complexity of the supply chain networks, as many entities are involved in each transaction [7]. Blockchain technology has the potential to tackle those problems. It grants trust along the supply chain. Moreover, it can track the provenance of intermediates, improve the traceability of goods, opportunities of optimization and auditing, create a decentralized network, smart contracts to manage agreements and facilitate an ecosystem of new services. Blockchain technology consists of a peer-to-peer digital ledger that connects different participants of a network. The distributed ledger technology provides the participants with an identical real-time updated copy of the ledger. Each participant has a unique cryptographic key and protects their respective transactions with powerful algorithms [8].

Case Studies and Success Stories

Enhancing supply chain transparency for better ethics and consumer information is still a work in progress for many large companies and entire industries. Nevertheless, there are places where this progress has already been made, and it has been applied with promising results. On the industry side, hope towards supply chain transparency is being placed in promising technologies such as blockchain. Blockchain holds particular promise due to its capabilities in preventing fraud, ensuring transparency, tracking goods, promoting accountability, and enabling consumer credit. As a solution, it is useful for several reasons. The ownership of every block in a blockchain ledger can be tracked back and verified, allowing companies to create an unalterable ledger of the ownership of goods or services across the supply chain. Moreover,

companies can pre-emptively counter fraud using decentralization and cryptography. In addition to these preventative capabilities, blockchain can be used to monitor goods across the supply chain to identify which organizations are responsible for damaging practices such as child labor or deforestation. By monitoring every block over the lifecycle of goods, accountability across entire sectors can be expanded. Moreover, by verifying the conditions in which goods were produced, blockchain helps ensure that consumer credit is being honored through ethical practices [4].

Challenges and Limitations of Implementing Blockchain In Supply Chains

Blockchain technology offers many advantages, but there are also some challenges and limitations associated with its implementation in supply chains that need to be considered. The following section describes some of these challenges in the context of supply chain [9].

Technological Constraints Some challenges and limitations regarding the blockchain technology itself are discussed. For example, the concept of smart contracts in blockchain is yet to see its full potential, despite several applications emerging in different contexts. Smart contracts can automate decision-making and ensure implementation once specified conditions are met. However, complex protocols or chains of events cannot yet be specified within a smart contract due to the current immaturity of the technology, as is seen in some specific applications in a context. Further development from different stakeholders (such as researchers, developers, and businesses) is needed before smart contracts can be used seamlessly in real-life contexts. Additionally, public permissionless blockchains (such as Bitcoin and Ethereum) are generally not suitable for the needs of SCs. The trade-off between decentralization/distribution, trust, control over the network, and scalability is also highlighted within blockchain technologies.

Most companies establishing a blockchain network in an SC setting opt for permissioned blockchains, which are more private and controllable than public blockchains. However, in doing so, companies give up much of the technology's potential for disintermediation, transparency, and clarity. This trade-off needs careful consideration when establishing a blockchain network [10]. **Operational Constraints** This section describes challenges and limitations regarding the processes and behavior of companies, firms, and organizations in SCs that are often outside the control of individual companies. For example, since most SC participants must join a blockchain network to obtain the advantages of the technology, a lack of incentives or opposition from other companies to join may be a major obstacle for a company. In a setting where coordinated action is beneficial for more than one company, yet

where companies are currently competing for the same market and customers, free-rider incentives may also exist. Competitors may withhold information from a blockchain to keep SC processes secret, while still benefiting from a more trustworthy and automated SC. This creates a dilemma in creating trust and commitment to the technology. Furthermore, the example of an absence of standardized codes on which SC parameters should be monitored and reported to other SC participants indicates that better coordination may be needed in SC networks. Decision protocols among SC participants regarding blockchain-control and ownership, accounting and audit roles, and rules for participation and exit, will be necessary before blockchain can be implemented in SCs [11]. **Regulatory Constraints** Some challenges and limitations in the areas of laws, legislation, and regulations are discussed. For example, in Europe, the General Data Protection Regulation (GDPR) imposes restrictions on digitally recorded data that companies must comply with. In blockchains, historical records generally cannot be changed and individuals cannot remove their registrations. Adoption of a blockchain by companies in an SC context needs to consider current regulatory measures for the handling of personal data [12].

Adoption Constraints Some limitations during the implementation of blockchain solutions are discussed. For example, conducting a pilot or trial of a blockchain solution is necessary to mitigate risks associated with broader implementation while simultaneously allowing swift action in technology adoption and SC participation. However, developing full trust in the blockchain solution may be difficult during a pilot. Considerable uncertainty about the reliability and functioning of the technology may still exist, even after successful trials [13].

Conclusion

Blockchain technology holds significant promise in enhancing supply chain transparency by providing a secure, decentralized, and immutable platform for tracking goods and verifying transactions. Its ability to ensure traceability, prevent fraud, and promote accountability makes it an invaluable tool for modern supply chains. However, the successful implementation of blockchain requires overcoming various challenges, including technological constraints, operational hurdles, and regulatory considerations. As the technology matures and more industries recognize its potential, blockchain is likely to become a cornerstone of supply chain management, driving greater efficiency, trust, and ethical compliance across global networks.

References

1. Jabbar, S., Lloyd, H., Hammoudeh, M., Adebisi, B., & Raza, U. (2021). Blockchain-enabled supply chain: Analysis, challenges, and future directions. *Multimedia Systems*, 27, 787–806. <https://www.springer.com>
2. Bellavista, P., Esposito, C., Foschini, L., Giannelli, C., Mazzocca, N., & Montanari, R. (2021). Interoperable blockchains for highly-integrated supply chains in collaborative manufacturing. *Sensors*, 21(15), 4955. <https://www.mdpi.com>
3. Brun, A., Karaosman, H., & Barresi, T. (2020). Supply chain collaboration for transparency. *Sustainability*. <https://www.mdpi.com>
4. Sunny, J., Undralla, N., & Pillai, V. M. (2020). Supply chain transparency through blockchain-based traceability: An overview with demonstration. *Computers & Industrial Engineering*. <https://www.academia.edu>
5. Nalluri, S. K. & Bathini, V. T. (2023). Next-Gen Life Sciences Manufacturing: A Scalable Framework for AI-Augmented MES and RPA-Driven Precision Healthcare Solutions. *International Journal of Engineering & Extended Technologies Research (IJEETR)*, 5(2), 6275-6281.
6. Wang, M., Wu, Y., Chen, B., & Evans, M. (2020). Blockchain and supply chain management: A new paradigm for supply chain integration and collaboration. *Operations and Supply Chain Management: An International Journal*, 14(1), 111–122. <https://www.oscm-forum.org>
7. Nandi, M., Bhattacharjee, R. K., Jha, A., & Barbhuiya, F. A. (2020, February). A secured land registration framework on blockchain. In *2020 Third ISEA Conference on Security and Privacy (ISEA-ISAP)* (pp. 130–138). IEEE. <https://ieeexplore.ieee.org>
8. Kuruvilla, S. (2021). Private regulation of labor standards in global supply chains: Problems, progress, and prospects. *CES*. <https://ces.ro>
9. Raja Santhi, A., & Muthuswamy, P. (2022). Influence of blockchain technology in manufacturing supply chain and logistics. *Logistics*. <https://www.mdpi.com>
10. Öztürk, C., & Yıldızbaşı, A. (2020). Barriers to implementation of blockchain into supply chain management using an integrated multi-criteria decision-making method: A numerical example. *Soft Computing*. <https://link.springer.com>

11. Zheng, Z., Xie, S., Dai, H. N., Chen, W., Chen, X., Weng, J., & Imran, M. (2020). An overview on smart contracts: Challenges, advances and platforms. *Future Generation Computer Systems*, 105, 475–491. <https://www.sciencedirect.com>
12. Nalluri, S. K. (2022). Transforming Diagnostics Manufacturing at Cepheid: Migration from Paper-Based Processes to Digital Manufacturing using Opcenter MES. *International Journal of Research and Applied Innovations*, 5(1), 9451-9456
13. Galati, F. (2022). Blockchain adoption in supply networks: A social capital perspective. *Supply Chain Management: An International Journal*. <https://www.emerald.com>
14. Veit, R. D. (2022). Safeguarding regional data protection rights on the global internet—The European approach under the GDPR. In *Personality and Data Protection Rights on the Internet: Brazilian and German Approaches* (pp. 445–484). Springer International Publishing. <https://link.springer.com>
15. Chowdhury, S., Rodriguez-Espindola, O., Dey, P., & Budhwar, P. (2023). Blockchain technology adoption for managing risks in operations and supply chain management: Evidence from the UK. *Annals of Operations Research*, 327(1), 539–574. <https://link.springer.com>